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Abstract—This paper considers an oligopoly model with an arbitrary number of Cournot-
reflexive agents under incomplete information in the classical case of linear cost and demand
functions. Agents make decisions based on a collective behavior model. The problem of iden-
tifying convergence conditions to the model equilibrium is studied, with an emphasis placed
on the trajectory of the sum of the action residuals of all agents. Aggregate estimates of this
trajectory are obtained. They can be used to judge how the trajectory of each agent evolves
towards the equilibrium.
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1. INTRODUCTION

In research areas dealing with behavioral models of rational agents under incomplete information,
considerable attention is paid to the oligopoly market. Game theory was the first scientific method
to analyze oligopoly [1]. Recent advances in oligopoly game theory were reviewed in [2].

Collective behavior theory models complement game-theoretic models by providing an opportu-
nity to study the behavior dynamics of rational agents under rather weak assumptions about their
awareness [3, 4]. The agent’s dynamic decision process is based on reflexive thinking about his best
choice considering the best responses of the other competitors. The dynamics are guided by the
agents’ choices. The determinative effect of reflexion is reaching an equilibrium [4, 5].

A significant number of studies of game-theoretic and collective behavior models in competitive
markets are devoted to the problem of identifying conditions for the existence and uniqueness of
an equilibrium as well as the convergence of agents’ trajectories to it. For example, see [6–16] and
many other related publications.

By accepting a certain hypothesis about the behavior of agents and their interaction, it is possible
to calculate the trajectory of each agent (the first approach). However, an aggregate description of
the behavior of the entire system, without characterizing the behavior of each agent in detail, seems
more appropriate (the second approach) for several reasons. Obviously, the activity of individual
agents at separate time instants cannot noticeably affect the convergence of trajectories. Besides,
the growth of the number of agents in the market, their trajectories, and the computing time
make the first approach less and less attractive. In some cases, the asymptotic convergence of the
calculated trajectories can be judged only after a considerable time, particularly when the process
evolves ambiguously or slowly, and the trend appears late. An intuitively aggregate description of
the collective behavior of a system of agents on considerable time intervals can be no less accurate
than a detailed one.
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2. FORMAL PROBLEM STATEMENT

As the basic model, we consider the Cournot oligopoly of n agents [1] competing in the outputs
of homogeneous products. By assumption, demand is determined by the function (the inverse
demand function depending on the total output of agents)

p(Q) = a− bQ, (1)

where p(Q) is the uniform market price, Q =
∑

i∈N qi is the total output of all n agents; qi is the
output of agent i, i ∈ N = {1, . . . , n}; a and b are parameters. The parameter a characterizes the
maximum possible price of the product under which the demand will tend to zero; the parameter b
characterizes the slope of the demand curve.

The total costs of agents have the form

φi(qi) = ciqi + di, (2)

where ci and di are the marginal and fixed costs of agent i, respectively. The goal functions of
agents are given by

Πi(p(Q), qi) = p(Q)qi − φi(qi) → max
qi

. (3)

By assumption, everything produced is sold, no capacity constraints are imposed, and no coali-
tions are allowed. The market state at a time instant t (t = 0, 1, 2, . . .) is described by the n-dimen-
sional vector qt = (qt1, . . . , q

t
i , . . . , q

t
n).

Agents are said to be collectively competitive in a Cournot market if each agent i satisfies the
marginal costs constraint

ci <
a+

∑
j∈N\{i} cj
n

. (4)

In this case, each agent is supposed to be competitive and, as in a normal form game, there
exists a unique (static Nash) equilibrium [17] q∗ = (q∗1 , . . . , q∗i , . . . , q∗n) with q∗i > 0 ∀i ∈ N in the
Cournot oligopoly model; for example, see [18].

Under game uncertainty (about the actions chosen by the competitive environment) and incom-
plete knowledge (of costs, goal functions, and other attributes of competitors), market equilibrium
can usually be reached not by one-time decision-making by agents but as the result of an iterative
reflexive process [3, 4, 18–20].

Consider a reflexive discrete process where the change of market states satisfies the axiom of
indicator behavior [4] as follows: at each time instant (t+ 1), each agent observes the outputs of
all agents chosen at the previous time instant t and adjusts his output by taking a step towards
the current position of his goal, xi(q

t−i), in the iterative procedure

qt+1
i = qti + γt+1

i (xi(q
t
−i)− qti), i ∈ N. (5)

Here, the parameter γt+1
i ∈ [0, 1], independently chosen by each agent i, determines his step

towards the current position of his goal. An agent can take a full step with γt+1
i = 1 (his best

response), remain on the spot with γt+1
i = 0, or take a partial step with γt+1

i ∈ (0, 1).

For agent i, the current position xi(q
t−i) of his goal is an output maximizing his goal function

provided that at the current time instant, the other agents choose the same output as at the previous
time instant [4, 21]. Here, qt−i = (qt1, . . . , q

t
i−1, q

t
i+1, . . . , q

t
n) is the opponents’ output profile for

agent i (the output vector of all agents except agent i) at the time instant t. According to [10, 18]),

xi(q
t
−i) =

hi −∑
j 	=i q

t
j

2
=

hi −Qt−i

2
, (6)
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where hi =
a−ci
b is the volume of a perfectly competitive market under the marginal cost pricing

p(Q) = ci (the perfectly competitive output of firm i); Qt−i =
∑

j 	=i q
t
j is the total output of the

environment of agent i (i, j ∈ N).

Let us derive the variable xi(q
t−i) to show its relation to qti . Using (1)–(3) for time instant t, we

obtain

∂
∏t

i

∂qti
= a− bqti − bQt

−i +

(
−b− b

∂Qt−i

∂qti

)
qti − ci = 0

and

qti =
(a− ci)/b−Qt

−i

2 + ∂Qt−i/∂q
t
i

.

Under the Cournot assumption, the output of the agent’s environment output will not change if he

changes his output. Therefore,
∂Qt

−i

∂qti
= 0 and the agent’s optimal output qti is

(a−ci)/b−
∑

j∈N\{i} qtj
2 .

This optimal output will be the current position xi(q
t−i) of the agent’s goal in (6).

For model (5)–(6), the trajectory of agent i is understood as the sequence of outputs q0i , q
1
i , . . . ,

qti , . . . realized within this model.

The problem of identifying convergence conditions of agents’ trajectories (5)–(6) to equilibrium
and its modifications in the classical Cournot oligopoly model (1)–(4) were considered by many
researchers; for example, see [18–20, 22–26] and other publications on the subject.

The peculiarity and novelty of the study presented below are the development of an aggregate
description of the entire system’s behavior to judge how the trajectory of each agent evolves towards
the equilibrium.

In this study, we sequentially solve the following tasks:

1) reduce agents’ models to a homogeneous form;

2) investigate the effect of total residuals on the convergence of agents’ trajectories;

3) describe in aggregate terms the transformation (recalculation) of the total residuals during
the transition between time instants;

4) describe in aggregate terms (estimate) the dynamics of the total residuals over the set of time
instants;

5) form convergence conditions of agents’ trajectories to the equilibrium using the aggregate
estimates of collective behavior model dynamics.

As intuition suggests, aggregates are preferably formed from homogeneous elements. Ideally,
homogeneous agents may differ only by their choice of the parameter γ. Let us analyze the possibility
of the ideal case for the market model (1)–(4) and the iterative process (5)–(6).

The next section begins with this task.

3. THE METHODS AND RESULTS OF THIS STUDY

Assume that within model (1)–(4), the process (5)–(6) converges under step parameters {γt+1
i }

(i ∈ N ; t = 0, 1, 2, . . .) and the marginal costs c = (c1, . . . , ci, . . . cn) of the agents.

Will this process converge under the same step parameters if the marginal costs of agents or
market parameters change?

To answer this question, we introduce the change of variables

εti = q∗i − qti (i ∈ N ; t = 0, 1, 2, . . .), (7)

where q∗i and qti are the equilibrium and current outputs of agent i, respectively.
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Using the well-known Cournot equilibrium relations hi = Q∗ + q∗i , we transform (5)–(6) as fol-
lows:

q∗i − qt+1
i = q∗i − qti − γt+1

i

(
hi −Qt−i

2
− qti

)
= q∗i − qti − γt+1

i

(
Q∗ + q∗i −Qt−i

2
− qti

)

= q∗i − qti − γt+1
i

(∑
j 	=i(q

∗
j − qtj) + 2q∗i

2
− qti

)
.

As a result,

εt+1
i = εti + γt+1

i

(
−
∑

j 	=i ε
t
j

2
− εti

)
. (8)

Here, by analogy with (1)–(6),

(
−
∑

j �=i
εtj

2

)
is the current position of the goal of agent i, and

(8) is the indicator behavior model, and the agent’s goal function has the form

Πi(ε) = −
⎛
⎝∑

j∈N
εj

⎞
⎠ εi → max

εi
, (9)

where ε = (ε1, . . . , εi, . . . , εn).

Let us demonstrate this fact. For time instant t, we find the optimal residuals of agent i using (9):

∂
∏t

i

∂εti
= −εti −

∑
j∈N\{i}

εtj −
(
1 +

∂
∑

j∈N\{i} εtj
∂εti

)
εti.

Consequently,

εti = −
∑

j∈N\{i}
εtj

/(
2 +

∂
∑

j∈N\{i} εtj
∂εti

)
.

By the Cournot assumption, the agent’s environment will not change its output if he does so.

Obviously, this assumption also applies to the residuals. Therefore,
∂
∑

j∈N\{i} εtj
∂εti

= 0, and the

current position of his goal (the optimal residuals at the current time instant) is

(
−
∑

j∈N\{i} εtj
2

)
.

For model (8), the trajectory of agent i will be understood as the sequence of residuals ε0i , ε
1
i , . . . ,

εti, . . . realized within this model.

The convergence of (8) means that εti → ε∗i = 0 as t → ∞.

Proposition 1. The indicator behavior process (8) converges if and only if the process (5)–(6)
converges within the model (1)–(4).

The proof of this proposition is provided in the Appendix.

The next proposition shows that the convergence of the trajectory of the total residuals of all
agents is sufficient for the convergence of the trajectory of each agent.

Proposition 2. If
∑

j∈N εtj → 0 as t → ∞, then εtj → ε∗j = 0 ∀j ∈ N.

This fact is proved in the Appendix using mathematical induction.

Note. The equality
∑

j∈N εtj = 0 for (8) implies the equalities |εt+1
j | = (1− γt+1

j /2)|εtj | and the

inequalities |εt+1
j | < |εtj | under γt+1

j 
= 0 ∀j ∈ N. They indicate that, in the case under consideration,
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the trajectories of all agents at time instant (t + 1) will be closer to the equilibrium than at time
instant t.

The final result for model (1)–(6), which essentially follows from Proposition 1, is presented
below.

Theorem 1. In the linear Cournot model (1)–(4) with competitive agents, the market parameters
a and b and the agents’ parameters ci and di do not affect the steps {γti}t=1,2,... ensuring the
convergence of the indicator behavior model (5)–(6).

Let us mention the advantages of studying the equilibrium problem based on model (8):

– The model is indifferent to the market and agents’ cost parameters (a, b, ci, di), which simplifies
the analysis procedure.

– The agents and their trajectories differ merely in the choice of the parameter γ and initial
data. Only the first factor matters here, since we are interested in convergence conditions for any
initial data.

– In model (5)–(6), economic constraints may require that the agents’ current outputs be non-
negative. In model (8), there is no basis for such nonnegativity requirements.

Now we proceed to the next problem, which is important for the convergence of the trajectory
of each agent (see Proposition 2). Let us discuss conditions on the parameters γ under which∑

j∈N εtj → 0.

Within model (8), we have
∑
j∈N

εt+1
j =

(
1− ∑

j∈N
γt+1
j /2

) ∑
j∈N

εt+1
j − ∑

j∈N
εtjγ

t+1
j /2.

For γt+1
j ≡ 1 ∀j ∈ N, it follows that

∑
j∈N

εt+1
j = (1− (1 + n)/2)

∑
j∈N

εt+1
j .

For γt+1
j ≡ 0 ∀j ∈ N, the result is

∑
j∈N

εt+1
j =

∑
j∈N

εtj .

Thus, if
∑

j∈N εtj 
= 0, then there exists a value of the parameter γ̃t+1 such that

∑
j∈N

εt+1
j = (1− γ̃t+1(1 + n)/2)

∑
j∈N

εtj . (10)

The value of the parameter γ̃t+1 is given by

γ̃t+1 =

⎛
⎝∑

j∈N
γt+1
j +

∑
j∈N

γt+1
j εtj/

∑
j∈N

εtj

⎞
⎠ / (1 + n) , (11)

where γ̃t+1 is the arithmetic weighted mean of the set of the parameters {γt+1
j }j∈N with weights

{ωt
j}j∈N , i.e., γ̃t+1 =

∑
j∈N

ωt
jγ

t+1
j∑

j∈N
ωt
j

and the weights are the real numbers ωt
i =

∑
j∈N εtj + εti.

The negative contribution of an agent to the parameter γ̃t+1 is possible if the sign of his residuals
does not coincide with that of the total residuals

∑
j∈N εtj = Q∗ −Qt of all agents.

Let some time instants t0 and τ, τ > t0, be fixed. Assuming that
∑

j∈N εt0j 
= 0 and γ̃t 
= 2
1+n ,

for t0 + 1 � t � τ we sequentially obtain

∑
j∈N

εt0+τ
j =

∑
j∈N

εt0j

τ∏
t=t0+1

(1− γ̃t(1 + n)/2) (12)

based on (10). (The cases in which γ̃t = 2
1+n and, accordingly,

∑
j∈N εtj = 0, have been discussed

in the note to Proposition 2.)
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Let us introduce the notations

T = {t0 + 1, . . . , τ}, T+ = {t ∈ T |1− γ̃t(1 + n)/2 > 0},
T− = {t ∈ T |1− γ̃t(1 + n)/2 < 0}.

Two cases of possible inequalities can occur at some time instants from set T+ : 1 � 1−γ̃t(1+n)/2
(if γ̃t � 0) and 0 < γ̃t(1 + n)/2 < 1 (if 0 < γ̃t < 2

1+n). The first case is “unfavorable” and the
second “favorable” for the convergence of the process. Similarly, in the set T−, there also exist
favorable time instants when −1 < 1− γ̃t(1 + n)/2 < 0 (if 2

1+n < γ̃t < 4
1+n), and unfavorable ones

when 1− γ̃t(1 + n)/2 < −1 (if 4
1+n � γ̃t).

Using the Cauchy inequality between the arithmetic mean and the geometric mean, we have

∏
t∈T+

(1− γ̃t(1 + n)/2) �

⎡
⎣ 1

t+

∑
t∈T+

(1− γ̃t(1 + n)/2)

⎤
⎦t+

=
[
1− ¯̃γτ+(1 + n)/2

]t+ ,

∏
t∈T−

(γ̃t(1 + n)/2− 1) �

⎡
⎣ 1

t−

∑
t∈T−

(γ̃t(1 + n)/2− 1)

⎤
⎦t−

=
[
¯̃γτ−(1 + n)/2− 1

]t− ,

where ¯̃γτ+ = 1
t+

∑
t∈T+

γ̃t and ¯̃γτ− = 1
t−

∑
t∈T− γ̃t are the mean values of the weighted parameter γ̃t

over the sets T+ and T−, respectively; t+(t−) is the number of time instants in the set T+

(T−, respectively), and τ = t+ + t−.
In view of (12), it follows that∣∣∣∣∣∣

∑
j∈N

εt0+τ
j

∣∣∣∣∣∣ �
[
1− ¯̃γτ+(1 + n)/2

]t+ ∣∣1− ¯̃γτ−(1 + n)/2
∣∣t−

∣∣∣∣∣∣
∑
j∈N

εt0j

∣∣∣∣∣∣ . (13)

Inequality (13) and Proposition 2 lead to the following result regarding the convergence of the
process (8).

Proposition 3. Model (8) converges to the equilibrium if, for an arbitrary t0 and τ > t0, the ex-
pression

[
1− ¯̃γτ+(1 + n)/2

]t+ ∣∣1− ¯̃γτ−(1 + n)/2
∣∣t− (τ = t+ + t−) vanishes as τ → ∞.

Corollary 1. If ∃t0 such that 0 < ¯̃γτ+ and ¯̃γτ− < 4
n+1 ∀τ > t0, then model (8) converges to the

equilibrium.

Let us explain the validity of this corollary. If t∈T+, then γ̃t< 2
1+n and ¯̃γτ+< 2

1+n . If t∈T−,
then γ̃t> 2

1+n and, consequently, ¯̃γτ− > 2
1+n . Therefore, for the inequalities

[
1− ¯̃γτ+(1 + n)/2

]
< 1

and
∣∣1− ¯̃γτ−(1 + n)/2

∣∣ < 1 to be true, it suffices to require 0 < ¯̃γτ+ and ¯̃γτ− < 4
1+n .

In addition, by Propositions 1 and 3, model (5)–(6) converges for the sets of parameters {γti}
whose averaged estimates satisfy the inequalities 0 < ¯̃γτ+ and ¯̃γτ− < 4

1+n .

Corollary 2. Let the parameters γ̃t, t = (1, 2, . . . , τ), be random variables, and let ¯̃γτ = 1
τ

∑τ
t=1 γ̃

t

converge in probability to the overall mean ¯̃γ. Then model (8) converges in probability to the equi-
librium as τ → ∞ if ¯̃γ < 4

1+n .

Numerical calculation: a brief example. Consider model (1)–(3) with n = 4, a = 100, b = 0.1,
c = (20; 25; 20; 30), and q0 = (250; 250; 100; 200). All agents bear the same fixed costs of 500. By
the formula hi =

a−ci
b we find h = (800; 750; 800; 700).

When the agents are completely informed, the static Nash equilibrium q∗ is the solution of the
system of linear algebraic equations qi +Q = hi (i = 1, 4). As a result, q∗i = hi − 1

5

∑4
j=1 hj and

q∗ = (190; 140; 190; 90).
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One fragment of the dynamics for n = 4

Time instants Residuals of agents’ actions Step parameters

t ε1 ε2 ε3 ε4 γ1 γ2 γ3 γ4
∑

εj γ̃ ¯̃γ+ ¯̃γ−
1 2 3 4 5 6 7 8 9 10 11 12 13

0 −60.0 −110.0 90.0 −110.0 −190.0

1 −10.0 −65.0 105.0 −72.5 0.40 0.30 0.30 0.25 −42.5 0.31 0.31

2 0.5 −48.9 95.6 −61.0 0.40 0.30 0.30 0.20 −13.8 0.27 0.29

3 3.2 −39.5 62.9 −51.7 0.40 0.30 0.80 0.25 −25.1 −0.33 0.08

4 7.5 −29.8 57.2 −42.1 0.40 0.30 0.30 0.25 −7.1 0.29 0.13

5 7.5 −22.4 39.7 −35.9 0.40 0.40 0.70 0.25 −11.2 −0.23 0.06

6 8.2 −15.7 35.4 −30.0 0.40 0.40 0.30 0.25 −2.1 0.32 0.11

7 6.1 −13.0 30.4 −26.0 0.70 0.30 0.30 0.25 −2.5 −0.08 0.08

8 5.4 −9.9 26.2 −22.4 0.40 0.40 0.30 0.25 −0.7 0.28 0.10

9 5.1 −8.3 22.4 −19.5 0.10 0.30 0.30 0.25 −0.3 0.24 0.12

10 4.7 −7.0 19.1 −17.1 0.20 0.30 0.30 0.25 −0.3 −0.03 0.10

11 3.4 −3.3 14.4 −10.1 0.60 1.00 0.50 0.80 4.3 5.61 5.61

12 −0.5 −3.8 5.0 −7.2 1.00 1.00 1.00 1.00 −6.5 1.00 3.31

13 3.0 1.3 5.4 −0.4 1.00 1.00 0.50 1.00 9.3 0.98 2.53

14 −3.2 −4.0 −2.0 −4.9 1.00 1.00 1.00 1.00 −14.0 1.00 2.15

15 5.4 5.0 6.0 4.6 1.00 1.00 1.00 1.00 21.0 1.00 1.92

16 −7.8 −8.0 −7.5 −8.2 1.00 1.00 1.00 1.00 −31.5 1.00 1.77

17 11.9 11.8 12.0 11.7 1.00 1.00 1.00 1.00 47.3 1.00 1.66

18 −17.7 −17.8 −17.6 −17.8 1.00 1.00 1.00 1.00 −71.0 1.00 1.57

19 26.6 26.6 26.7 26.6 1.00 1.00 1.00 1.00 106.5 1.00 1.51

20 −39.9 −6.7 −26.6 −39.9 1.00 0.50 0.80 1.00 −113.1 0.82 1.44

21 36.6 23.3 8.3 36.6 1.00 0.50 0.50 1.00 104.8 0.77 0.77

22 −34.1 −8.7 −19.9 −34.1 1.00 0.50 0.50 1.00 −96.9 0.77 0.77

23 31.4 17.7 9.3 31.4 1.00 0.50 0.50 1.00 89.7 0.77 0.77

24 −11.0 −9.2 −15.5 −29.2 0.70 0.50 0.50 1.00 −64.8 0.69 0.75

25 26.9 9.3 4.6 −5.7 1.00 0.50 0.50 0.50 35.2 0.62 0.72

26 −4.1 −1.8 −5.3 −20.4 1.00 0.50 0.50 1.00 −31.7 0.76 0.73

27 13.8 6.6 3.9 5.6 1.00 0.50 0.50 1.00 29.9 0.78 0.74

28 5.0 −2.5 −4.5 −12.1 0.40 0.50 0.50 1.00 −14.2 0.59 0.72

29 9.6 1.6 0.1 1.0 1.00 0.50 0.50 1.00 12.4 0.75 0.72

30 −1.4 −1.9 −3.0 −5.7 1.00 0.50 0.50 1.00 −12.0 0.79 0.73

Note: the notations in the table header are provided without the superscript “t,” which is
supposed to be the corresponding time instant (period or iteration) from column 1.

The transition to model (8) is performed using the formula for calculating the residuals εti =
q∗i − qti . We have ε0 = (−60;−110; 90;−110).

For each time instant (column 1), the current values of the residuals εti (columns 2–5), and
the current values of the parameters γti (columns 6–9), the table presents the arithmetic weighted
means γ̃t of the sets of parameters {γtj} (column 11) calculated using formulas (8) and (11).

The convergence of the process depends on what steps γ the agents choose. As is known, if
the agents take the maximum (unit) steps γ, the process converges only in the case n = 2. For
n = 4, the process diverges if all agents take steps exceeding 0.8. Generally speaking, for n = 4 the
question of convergence remains open if the agents act differently: some agents choose steps greater
than 0.8 while the others smaller.
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Fig. 1. The dynamics of action residuals of individual agents.

Fig. 2. The dynamics of total residuals.

To visualize the conditions introduced above and indicate the convergence of the process, we
separate 3 intervals containing 10 time instants each. During the first 10 time instants, the agents
intentionally take small steps to ensure convergence. During the next 10 time instants, larger steps
are selected to show the divergence of the process. During the final 10 time instants, the process is
again made convergent due to small steps taken by some agents.

Consider the process dynamics in more detail. At each of the first 10 time instants, the weighted
means γ̃t do not exceed 2/(1 + n) = 0.4 (there are two negative values), and the aggregate esti-

mate ¯̃γτ+ (their arithmetic mean over t time instants, see column 12) lies in the range (0, 0.4).
Therefore, we observe a trend for decreasing the absolute value of the total residuals: from

ε0=(−60;−110; 90;−110) and
∣∣∣∑4

j=1 ε
0
j

∣∣∣=190 to ε10=(4.7;−7.0; 19.1;−17.1) and
∣∣∣∑4

j=1 ε
10
j

∣∣∣=0.3.

During the next 10 time instants (from the 11th to the 20th), γ̃t and the aggregate dynam-
ics estimate ¯̃γτ− (column 13) exceed 4/(1 + n) = 0.8, which determines a trend for increasing the

absolute value of the total residuals to ε20 = (−39.9;−6.7;−26.6;−39.9) and
∣∣∣∑4

j=1 ε
20
j

∣∣∣ = 113.1.

From the 21st to the 30th time instants, the arithmetic weighted means γ̃t and their arithmetic
mean ¯̃γτ− lie in the range (0.4, 0.8). In other words, the convergence conditions of Proposition 3
and Corollary 1 are satisfied for t0 = 21, and we observe a trend for decreasing the total residuals:

ε30 = (−1.4;−1.9;−3.0;−5.7) and
∣∣∣∑4

j=1 ε
30
j

∣∣∣ = 12.0.

Also, we have ¯̃γ30 = 1
30

∑30
t=1 γ̃

t = 0.76. According to the table data, the dynamics evolve towards
the static Nash equilibrium.

Figures 1 and 2 demonstrate the “synchronization” of the dynamics of individual and total costs.
Obviously, if the residuals of each agent converge, the total residuals of all agents will converge as
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well. The converse also follows from Proposition 2: if the total residuals vanish, the residuals of
each agents will vanish too.

4. CONCLUSIONS

This paper has considered the problem of identifying convergence conditions of collective behav-
ior models to equilibrium. The peculiarity and novelty of the approach presented above consist in
the following. Traditionally, such conditions are formulated as admissible ranges for the values of
the parameters γ for each agent at each time instant: if each agent chooses his parameter within
such a range at each time instant, the dynamics surely converge. In this study, the convergence
conditions have been formulated for a set of time instants (i.e., over a time interval) as an admis-
sible range for the arithmetic mean of the parameters, which are the arithmetic weighted means of
the set {γtj}j∈N for each time instant t included in the time interval. If the mean over the time
interval belongs to the range, the dynamics of each agent will evolve towards the equilibrium. In
addition, if the set of time instants is unbounded, the dynamics of each agent will surely converge
to the equilibrium.

APPENDIX

Proof of Proposition 1. First, we note the existence of a unique static Nash equilibrium in
model (9) and ε∗i = 0 ∀i ∈ N.

The validity of Proposition 1 follows from the fact that one process is obtained from the other
via a transformation based on the residuals as the change of variables. Therefore, the convergence
of the process (5)–(6) directly implies the convergence of the process (8).

Now we employ mathematical induction to show that the convergence of the process (5)–(6)
follows from the convergence of the process (8).

Let ε0 be the initial data vector of the process (8) under which it converges. We define by
q0 = q∗ − ε0 the initial data vector of the process (5)–(6) and calculate ε1 using formula (8). In
view of hi = Q∗ + q∗i and (6), we establish that q1 = q∗ − ε1 :

q∗i − ε1i = q∗i − ε0i − γ1i

(
−
∑

j 	=i ε
0
j

2
− ε0i

)
= q0i − γ1i

(
−
∑

j 	=i(q
∗
j − q0j )

2
− (q∗i − q0i )

)

= q0i + γ1i

(
2q∗i +

∑
j 	=i(q

∗
j − q0j )

2
− q0i

)
= q0i + γ1i

(
Q∗ + q∗i −

∑
j 	=i q

0
j

2
− q0i

)

= q0i + γ1i

(
hi −∑

j 	=i q
0
j

2
− q0i

)
= q0i + γ1i (xi(q

0
−i)− q0i ) = q1i .

By analogy, it can be shown that qt = q∗ − εt implies qt+1 = q∗ − εt+1 for εt+1 calculated using
formula (8). Therefore, if εt → 0, then qt → q∗.

The proof of Proposition 1 is complete.

Proof of Proposition 2. Suppose that
∑

j∈N εtj → 0. Then ∀δ > 0 ∃t′ such that
∣∣∣∑j∈N εtj

∣∣∣ < δ for

t > t′.
Letting t = t′ + 1 and using (8) yield

∣∣∣εt+1
i

∣∣∣ � (1− γt+1
i /2)

∣∣∣εti∣∣∣+ γt+1
i /2

∣∣∣∣∣∣
∑
j∈N

εtj

∣∣∣∣∣∣ < (1− γt+1
i /2)

∣∣∣εti∣∣∣+ δγt+1
i /2 < (1− γt+1

i /2)
∣∣∣εti∣∣∣+ δ.
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Based on (8) and the previous inequality, we have

∣∣∣εt+2
i

∣∣∣� (1−γt+2
i /2)

∣∣∣εt+1
i

∣∣∣+γt+2
i /2

∣∣∣∣∣∣
∑
j∈N

εt+1
j

∣∣∣∣∣∣< (1−γt+2
i /2)

∣∣∣εt+1
i

∣∣∣+ δγt+2
i /2

< (1− γt+2
i /2)(1 − γt+1

i /2)
∣∣∣εti∣∣∣+ [

(1− γt+2
i /2) + γt+2

i /2
]
δ

< (1− γt+2
i /2)(1 − γt+1

i /2)
∣∣∣εti∣∣∣+ δ.

Following the method of mathematical induction, we assume that at some time instant (t+m),

∣∣∣εt+m
i

∣∣∣ < ∣∣∣εti∣∣∣× m∏
l=1

(1− γt+l
i /2) + δ.

Based on (8) and the last inequality,

∣∣∣εt+m+1
i

∣∣∣ � (1− γt+m+1
i /2)

∣∣∣εt+m
i

∣∣∣+ γt+m+1
i /2

∣∣∣∣∣∣
∑
j∈N

εt+m
j

∣∣∣∣∣∣ < (1− γt+m+1
i /2)

∣∣∣εt+m
i

∣∣∣+ δγt+m+1
i /2

< (1− γt+m+1
i /2)

[∣∣∣εti∣∣∣× m∏
l=1

(1− γt+l
i /2) + δ

]
+ δγt+m+1

i =
∣∣∣εti∣∣∣× m+1∏

l=1

(1− γt+l
i /2) + δ.

In other words, the same inequality holds at time instant (t+m+ 1).

In the inequalities derived for each time instant, the first term vanishes as m → ∞ under γ 
= 0
and an arbitrarily small number δ. Therefore, the conclusion follows, and the proof of Proposition 2
is complete.
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